If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+19x-50=0
a = 4.9; b = 19; c = -50;
Δ = b2-4ac
Δ = 192-4·4.9·(-50)
Δ = 1341
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1341}=\sqrt{9*149}=\sqrt{9}*\sqrt{149}=3\sqrt{149}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-3\sqrt{149}}{2*4.9}=\frac{-19-3\sqrt{149}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+3\sqrt{149}}{2*4.9}=\frac{-19+3\sqrt{149}}{9.8} $
| 1/4x+17/4x=3 | | 350+15x=200125x | | -y+-12=-y+6 | | -n-5n=8-8n | | -7.3=w/7+10.2 | | b/7+18=19 | | -104+4=8x+2x | | 4m+5=2m+6 | | b7+18=19 | | -19=-8+2(x-9) | | N+6=-8n+15 | | 28=11+k | | -25(10+-1x)=25x+250 | | 11x+13(10-x)=209 | | 2y=2*10=20 | | 180=5x+16+7x-4 | | 3/5u-7/2=-7/3 | | 7x+1=-53+2x | | 2(d+5)=10 | | 2n+19+5n+21=180 | | -3w-5=2w-40 | | 1/4(x+1)+1=2 | | 2x−1+2x+5=103x−7 | | 5x+4x+66=180 | | X-0.1x=18.9 | | 3.5+.5y+1.1=-4.5 | | 4c−28=20 | | 2=d/8-1 | | 97=49+2s | | q/8-(2)=1 | | -3t+3=30 | | |x+3|=45 |